YES 1.124 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule Main
  ((lookup :: Int  ->  [(Int,a)]  ->  Maybe a) :: Int  ->  [(Int,a)]  ->  Maybe a)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  ((lookup :: Int  ->  [(Int,a)]  ->  Maybe a) :: Int  ->  [(Int,a)]  ->  Maybe a)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False

The following Function with conditions
lookup k [] = Nothing
lookup k ((x,y: xys)
 | k == x
 = Just y
 | otherwise
 = lookup k xys

is transformed to
lookup k [] = lookup3 k []
lookup k ((x,y: xys) = lookup2 k ((x,y: xys)

lookup0 k x y xys True = lookup k xys

lookup1 k x y xys True = Just y
lookup1 k x y xys False = lookup0 k x y xys otherwise

lookup2 k ((x,y: xys) = lookup1 k x y xys (k == x)

lookup3 k [] = Nothing
lookup3 ww wx = lookup2 ww wx



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ Narrow

mainModule Main
  (lookup :: Int  ->  [(Int,a)]  ->  Maybe a)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_lookup11(wy81, wy82, wy83, wy84, Zero, Succ(wy860), bc) → new_lookup12(wy81, wy82, wy83, wy84, bc)
new_lookup(Pos(Zero), :(@2(Neg(Succ(wy40000)), wy401), wy41), bb) → new_lookup(Pos(Zero), wy41, bb)
new_lookup1(wy74, wy75, wy76, wy77, Zero, Succ(wy790), ba) → new_lookup10(wy74, wy75, wy76, wy77, ba)
new_lookup1(wy74, wy75, wy76, wy77, Succ(wy780), Succ(wy790), ba) → new_lookup1(wy74, wy75, wy76, wy77, wy780, wy790, ba)
new_lookup(Neg(Succ(wy300)), :(@2(Pos(wy4000), wy401), wy41), bb) → new_lookup(Neg(Succ(wy300)), wy41, bb)
new_lookup10(wy74, wy75, wy76, wy77, ba) → new_lookup(Pos(Succ(wy74)), wy77, ba)
new_lookup(Pos(Succ(wy300)), :(@2(Neg(wy4000), wy401), wy41), bb) → new_lookup(Pos(Succ(wy300)), wy41, bb)
new_lookup11(wy81, wy82, wy83, wy84, Succ(wy850), Zero, bc) → new_lookup(Neg(Succ(wy81)), wy84, bc)
new_lookup(Pos(Succ(wy300)), :(@2(Pos(Zero), wy401), wy41), bb) → new_lookup(Pos(Succ(wy300)), wy41, bb)
new_lookup(Pos(Zero), :(@2(Pos(Succ(wy40000)), wy401), wy41), bb) → new_lookup(Pos(Zero), wy41, bb)
new_lookup11(wy81, wy82, wy83, wy84, Succ(wy850), Succ(wy860), bc) → new_lookup11(wy81, wy82, wy83, wy84, wy850, wy860, bc)
new_lookup(Neg(Zero), :(@2(Neg(Succ(wy40000)), wy401), wy41), bb) → new_lookup(Neg(Zero), wy41, bb)
new_lookup(Neg(Succ(wy300)), :(@2(Neg(Succ(wy40000)), wy401), wy41), bb) → new_lookup11(wy300, wy40000, wy401, wy41, wy300, wy40000, bb)
new_lookup(Neg(Succ(wy300)), :(@2(Neg(Zero), wy401), wy41), bb) → new_lookup(Neg(Succ(wy300)), wy41, bb)
new_lookup12(wy81, wy82, wy83, wy84, bc) → new_lookup(Neg(Succ(wy81)), wy84, bc)
new_lookup1(wy74, wy75, wy76, wy77, Succ(wy780), Zero, ba) → new_lookup(Pos(Succ(wy74)), wy77, ba)
new_lookup(Pos(Succ(wy300)), :(@2(Pos(Succ(wy40000)), wy401), wy41), bb) → new_lookup1(wy300, wy40000, wy401, wy41, wy300, wy40000, bb)
new_lookup(Neg(Zero), :(@2(Pos(Succ(wy40000)), wy401), wy41), bb) → new_lookup(Neg(Zero), wy41, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_lookup(Neg(Zero), :(@2(Neg(Succ(wy40000)), wy401), wy41), bb) → new_lookup(Neg(Zero), wy41, bb)
new_lookup(Neg(Zero), :(@2(Pos(Succ(wy40000)), wy401), wy41), bb) → new_lookup(Neg(Zero), wy41, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_lookup1(wy74, wy75, wy76, wy77, Zero, Succ(wy790), ba) → new_lookup10(wy74, wy75, wy76, wy77, ba)
new_lookup1(wy74, wy75, wy76, wy77, Succ(wy780), Succ(wy790), ba) → new_lookup1(wy74, wy75, wy76, wy77, wy780, wy790, ba)
new_lookup(Pos(Succ(wy300)), :(@2(Neg(wy4000), wy401), wy41), bb) → new_lookup(Pos(Succ(wy300)), wy41, bb)
new_lookup10(wy74, wy75, wy76, wy77, ba) → new_lookup(Pos(Succ(wy74)), wy77, ba)
new_lookup1(wy74, wy75, wy76, wy77, Succ(wy780), Zero, ba) → new_lookup(Pos(Succ(wy74)), wy77, ba)
new_lookup(Pos(Succ(wy300)), :(@2(Pos(Succ(wy40000)), wy401), wy41), bb) → new_lookup1(wy300, wy40000, wy401, wy41, wy300, wy40000, bb)
new_lookup(Pos(Succ(wy300)), :(@2(Pos(Zero), wy401), wy41), bb) → new_lookup(Pos(Succ(wy300)), wy41, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_lookup(Pos(Zero), :(@2(Neg(Succ(wy40000)), wy401), wy41), bb) → new_lookup(Pos(Zero), wy41, bb)
new_lookup(Pos(Zero), :(@2(Pos(Succ(wy40000)), wy401), wy41), bb) → new_lookup(Pos(Zero), wy41, bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_lookup11(wy81, wy82, wy83, wy84, Zero, Succ(wy860), bc) → new_lookup12(wy81, wy82, wy83, wy84, bc)
new_lookup(Neg(Succ(wy300)), :(@2(Neg(Succ(wy40000)), wy401), wy41), bb) → new_lookup11(wy300, wy40000, wy401, wy41, wy300, wy40000, bb)
new_lookup(Neg(Succ(wy300)), :(@2(Pos(wy4000), wy401), wy41), bb) → new_lookup(Neg(Succ(wy300)), wy41, bb)
new_lookup(Neg(Succ(wy300)), :(@2(Neg(Zero), wy401), wy41), bb) → new_lookup(Neg(Succ(wy300)), wy41, bb)
new_lookup12(wy81, wy82, wy83, wy84, bc) → new_lookup(Neg(Succ(wy81)), wy84, bc)
new_lookup11(wy81, wy82, wy83, wy84, Succ(wy850), Zero, bc) → new_lookup(Neg(Succ(wy81)), wy84, bc)
new_lookup11(wy81, wy82, wy83, wy84, Succ(wy850), Succ(wy860), bc) → new_lookup11(wy81, wy82, wy83, wy84, wy850, wy860, bc)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: